Share this post on:

3. Stolz, J.F.; Reid, R.P.; Visscher, P.T.; Decho, A.
3. Stolz, J.F.; Reid, R.P.; Visscher, P.T.; Decho, A.W.; Norman, R.S.; Aspden, R.J.; Bowlin, E.M.; Franks, J.; Foster, J.S.; Paterson, D.M.; et al. The microbial communities of modern marine stromatolites at Highborne Cay, Bahamas. Atoll Res. Bull. 2010, 567, 19. 4. Reid, R.P.; Visscher, P.T.; Decho, A.W.; Stolz, J.F.; Bebout, B.M.; Dupraz, C.; Macintyre, I.G.; Paerl, H.W.; Pinckney, J.L.; Prufert-Bebout, L.; et al. The part of microbes in accretion, lamination, and early lithification of modern day marine stromatolites. Nature 2000, 406, 98992. 5. Grotzinger, J.P.; Knoll, A.H. Stromatolites in PreCambrian carbonates: Evolutionary mileposts or environmental dipsticks Ann. Rev. Earth Planet Sci. 1999, 27, 31358. 6. Pinckney, J.L.; Reid, R.P. Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas. Facies 1997, 36, 20407. 7. Paerl, H.W.; Steppe, T.F.; Reid, R.P. Bacterial-mediated precipitation in marine stromatolites. Environ. Microbiol. 2001, three, 12330. eight. Decho, A.W.; Visscher, P.T.; Reid, R.P. Production and cycling of all-natural microbial exopolymers (EPS) within a marine stromatolite. Palaios 2005, 219, 716. 9. Andres, M.S.; Sumner, D.Y.; Reid, R.P.; Swart, P.K. Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 2006, 34, 97376. ten. Visscher, P.T.; Reid, R.P.; Bebout, B.M. Microscale observations of sulfate reduction: Proof of microbial activity forming lithified micritic laminae in modern day marine stromatolites. Geology 2000, 28, 91922. 11. Bowlin, E.M.; Klaus, J.S.; Foster, J.S.; Andres, M.S.; Custals, L.; Reid, R.P. Environmental controls on microbial community cycling in modern day marine stromatolites. Sediment. Geol. 2012, 26364, 455. 12. Canfield, D.E.; Des Marais, D.J. Aerobic sulfate reduction in microbial mats. NOP Receptor/ORL1 list Science 1991, 251, 1471473. 1.Int. J. Mol. Sci. 2014,13. Visscher, P.T.; Quist, P.; van Gemerden, H. Methylated sulfur compounds in microbial mats: In situ concentrations and metabolism by a colorless sulfur bacterium. Appl. Environ. Microbiol. 1991, 57, 1758763. 14. Fr d, C.; Cohen, Y. Diurnal cycles of sulfate reduction beneath oxic conditions in microbial mats. Appl. Environ. Microbiol. 1992, 58, 707. 15. Krekeler, D.; Signalevich, P.; Teske, A.; Cypionka, H.; Cohen, Y. A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Archiv. Microbiol. 1997, 176, 6975. 16. Visscher, P.T.; Gritzer, R.F.; Leadbetter, E.R. Low-molecular weight sulfonates, a significant substrate for sulfate reducers in marine microbial mats. Appl. Environ. Microbiol. 1999, 65, 3272278. 17. Brune, A.; Frenzel, P.; Cypionka, H. Life in the oxic-anoxic interface: Microbial activities and adaptations. FEMS Microbiol. Rev. 2000, 24, 69110. 18. Cypionka, H. Oxygen respiration by Desulfovibrio species. Ann. Rev. Microbiol. 2000, 54, 82748. 19. Gallagher, K.L.; Kading, T.J.; Braissant, O.; Dupraz, C.; Visscher, P.T. Inside the alkalinity engine: The role of electron donors inside the organomineralization potential of sulfate-reducing bacteria. Geobiology 2012, ten, 51830. 20. Visscher, P.T.; Stolz, J.F. Microbial mats as bioreactors: Populations, processes, and goods. Palaios 2005, 219, 8700. 21. Petrisor, A.I.; Decho, A.W. Applying geographical Nav1.2 list details strategies to quantify the spatial structure of endolithic boring processes within sediment grains of marine stromatolites. J. Microbiol. Solutions 2004, 56, 17380.

Share this post on: