N scan or take a photo of the object in their workplace, task, or virtual case, and the real object will be integrated in MARE. GP behavior can be tracked and their skill within the knowledge level tested. For example, KS1 involves obtaining microbiological cultures or other relevant tests before starting treatment as necessary. A patient who has bacterial pneumonia or viral pneumonia will be shown to a GP treating in MARE. The GP will either select laboratory tests and interpret results or not. We will know whether the GP achieves KS1 or not. The KC of GPs can also be evaluated in MARE. GPs can write instant I-BRD9MedChemExpress I-BRD9 messages, comment, and annotate that they understand the rational use of antibiotics. GPs can also categorize, tag, or highlight the information that they think is correct. For example, KC2 is recognizing trade and generic names, and the class of prescribed antimicrobials. GPs can categorize the class of prescribed antimicrobials when using MARE to scan trade or generic names.Competence LevelThe competence level expected of GPs regarding rational use of antibiotics is described in Table 2. Emotions and values not only affect the application of knowledge but are also a foundation for building GP competence according to physicians’ professional competence definitions [34]. When we use MARE to evaluate GPs’ competence levels, the cases could be conducted in mixed real environments (eg, the real person and the symptom described coexist on the GP’s mobile phone in his or her workplace). The Biotin-VAD-FMK structure procedure for forecasting, executing, or replying can be uploaded to evaluate the GP’s CC and CS. For example, CC4 is constructing a prescription for an antimicrobial with its pharmacokinetics and knowing how this affects the choice of dosage regimen. The case condition will change when different antimicrobials are used with their pharmacokinetics. The result for the forecasting of antibiotics by the GP and the dosage regimen will be evaluated.Application of Mobile Augmented Reality Education to a Health Care ChallengeIn recent years, one of the global health threats has been the spread of antibiotic resistance. Encouraging rational antibiotic use is of paramount concern to authorities worldwide in order to minimize the development of resistance [50]. Multifaceted national and international strategies have been recommended [51]. Education is an important strategy for the rational use of antibiotics. We used the MARE framework to design GP training for the rational use of antibiotics. Implementing the MARE framework involves several steps: (1) defining the educational outcomes (based on the outcome layer), (2) defining the GP’s personal paradigm, (3) characterizing the learning environment, and (4) designing the learning activities.Performance LevelThe performance level expected of GPs regarding the rational use of antibiotics is shown in Table 3. To aid GPs in assessing their workplace performance using the MARE framework, we should build a network for physicians in which they can share their work experiences; then the GPs can review, question, and validate their work performances with each other. Further, the GPs can negotiate, debate, and comment on real cases, and their performance in skills, such as PC and PS, can be tracked and estimated. For example, PS2 is mastering when to use a delayed antimicrobial prescription and how to negotiate this with the patient. One way is to evaluate the GP’s response with the patient case shared on MARE with othe.N scan or take a photo of the object in their workplace, task, or virtual case, and the real object will be integrated in MARE. GP behavior can be tracked and their skill within the knowledge level tested. For example, KS1 involves obtaining microbiological cultures or other relevant tests before starting treatment as necessary. A patient who has bacterial pneumonia or viral pneumonia will be shown to a GP treating in MARE. The GP will either select laboratory tests and interpret results or not. We will know whether the GP achieves KS1 or not. The KC of GPs can also be evaluated in MARE. GPs can write instant messages, comment, and annotate that they understand the rational use of antibiotics. GPs can also categorize, tag, or highlight the information that they think is correct. For example, KC2 is recognizing trade and generic names, and the class of prescribed antimicrobials. GPs can categorize the class of prescribed antimicrobials when using MARE to scan trade or generic names.Competence LevelThe competence level expected of GPs regarding rational use of antibiotics is described in Table 2. Emotions and values not only affect the application of knowledge but are also a foundation for building GP competence according to physicians’ professional competence definitions [34]. When we use MARE to evaluate GPs’ competence levels, the cases could be conducted in mixed real environments (eg, the real person and the symptom described coexist on the GP’s mobile phone in his or her workplace). The procedure for forecasting, executing, or replying can be uploaded to evaluate the GP’s CC and CS. For example, CC4 is constructing a prescription for an antimicrobial with its pharmacokinetics and knowing how this affects the choice of dosage regimen. The case condition will change when different antimicrobials are used with their pharmacokinetics. The result for the forecasting of antibiotics by the GP and the dosage regimen will be evaluated.Application of Mobile Augmented Reality Education to a Health Care ChallengeIn recent years, one of the global health threats has been the spread of antibiotic resistance. Encouraging rational antibiotic use is of paramount concern to authorities worldwide in order to minimize the development of resistance [50]. Multifaceted national and international strategies have been recommended [51]. Education is an important strategy for the rational use of antibiotics. We used the MARE framework to design GP training for the rational use of antibiotics. Implementing the MARE framework involves several steps: (1) defining the educational outcomes (based on the outcome layer), (2) defining the GP’s personal paradigm, (3) characterizing the learning environment, and (4) designing the learning activities.Performance LevelThe performance level expected of GPs regarding the rational use of antibiotics is shown in Table 3. To aid GPs in assessing their workplace performance using the MARE framework, we should build a network for physicians in which they can share their work experiences; then the GPs can review, question, and validate their work performances with each other. Further, the GPs can negotiate, debate, and comment on real cases, and their performance in skills, such as PC and PS, can be tracked and estimated. For example, PS2 is mastering when to use a delayed antimicrobial prescription and how to negotiate this with the patient. One way is to evaluate the GP’s response with the patient case shared on MARE with othe.