Share this post on:

Ci. 2013,ten. Shake, J.G.; Gruber, P.J.; Baumgartner, W.A.; Senechal, G.; Meyers, J.; Redmond, J.M.; Pittenger, M.F.; Martin, B.J. Mesenchymal stem cell implantation within a swine myocardial infarct model: Engraftment and functional effects. Ann. Thorac. Surg. 2002, 73, 1919925. 11. Nagaya, N.; Kangawa, K.; Itoh, T.; Iwase, T.; Murakami, S.; Miyahara, Y.; Fujii, T.; Uematsu, M.; Ohgushi, H.; Yamagishi, M.; et al. Transplantation of mesenchymal stem cells improves cardiac function inside a rat model of dilated cardiomyopathy. Circulation 2005, 112, 1128135. 12. Mu, Y.; Cao, G.; Zeng, Q.; Li, Y. Transplantation of induced bone marrow mesenchymal stem cells improves the cardiac function of rabbits with dilated cardiomyopathy by way of upregulation of vascular endothelial development factor and its receptors. Exp. Biol. Med. 2011, 236, 1100107. 13. Yoo, K.J.; Li, R.K.; Weisel, R.D.; Mickle, D.A.; Jia, Z.Q.; Kim, E.J.; Tomita, S.; Yau, T.M. Heart cell transplantation improves heart function in dilated cardiomyopathic hamsters. Circulation 2000, 102, III204 II209. 14. Seth, S.; Narang, R.; Bhargava, B.; Ray, R.; Mohanty, S.; Gulati, G.; Kumar, L.; Reddy, K.S.; Venugopal, P. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: Clinical and histopathological final results: The first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial. J. Am. Col Cardiol. 2006, 48, 2350351. 15. Fischer-Rasokat, U.; Assmus, B.; Seeger, F.H.; Honold, J.; Leistner, D.; Fichtlscherer, S.; Schachinger, V.; Tonn, T.; Martin, H.; Dimmeler, S.; et al. A pilot trial to assess prospective effects of selective intracoronary bone marrow-derived progenitor cell infusion in individuals with nonischemic dilated cardiomyopathy: Final 1-year outcomes from the transplantation of progenitor cells and functional regeneration enhancement pilot trial in sufferers with nonischemic dilated cardiomyopathy. Circ. Heart Fail. 2009, two, 41723. 16. Sensible, N.; Riley, P.R. The stem cell movement. Cir. Res. 2008, 102, 1155168. 17. Zhou, Y.L.; Zhang, H.F.; Li, X.L.; Di, R.M.; Yao, W.M.; Li, D.F.; Feng, J.L.; Huang, J.; Cao, K.J.; Fu, M. Increased stromal-cell-derived issue 1 enhances the homing of bone marrow derived mesenchymal stem cells in dilated cardiomyopathy in rats.Mangiferin web Chin. Med. J. 2010, 123, 3282287. 18. GenBank sequence database. Out there on the net: http://www.ncbi.nlm.nih.gov (accessed on ten April 2013). 19. Primer3 computer software. Available on the web: http://fokker.wi.mit.edu/primer3/input.htm (accessed on ten April 2013). 20. Bot, I.; Guo, J.; van Eck, M.; van Santbrink, P.J.; Groot, P.H.; Hildebrand, R.B.; Seppen, J.; van Berkel, T.J.; Biessen, E.A. Lentiviral shRNA silencing of murine bone marrow cell CCR2 leads to persistent knockdown of CCR2 function in vivo.GRO-alpha/CXCL1 Protein site Blood 2005, 106, 1147153.PMID:23812309 21. Zhuang, Y.; Chen, X.; Xu, M.; Zhang, L.Y.; Xiang, F. Chemokine stromal cell-derived aspect 1/CXCL12 increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction. Chin. Med. J. 2009, 122, 18387. 22. Abbott, J.D.; Huang, Y.; Liu, D.; Hickey, R.; Krause, D.S.; Giordano, F.J. Stromal cell-derived factor-1alpha plays a critical function in stem cell recruitment to the heart after myocardial infarction but just isn’t adequate to induce homing in the absence of injury. Circulation 2004, 110, 3300305. 23. Zhou, H.R.; Kim, E.K.; Kim, H.; Claycombe, K.J. Obesity-associated mouse adipose stem cell secretion of monocyte chemotactic protein-1. Am.

Share this post on: